
 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

UNIT- 3

LISTS , DICTIONARIES, FUNCTIONS AND MODULES

List and Dictionaries: Lists, Defining Simple Functions, Dictionaries.

Design with Function: Functions as Abstraction Mechanisms, Problem Solving with Top Down

Design, Design with Recursive Functions, Case Study Gathering Information from a File System,

Managing a Program’s Namespace, Higher Order Function.

Modules: Modules, Standard Modules, Packages

Lists :

• A list is a sequence of data values called items or elements. An item can be of any type.

• Here are some real-world examples of lists:

– A shopping list for the grocery store

– A to-do list

– A roster for an athletic team

– A guest list for a wedding

– A recipe, which is a list of instructions

– A text document, which is a list of lines

– The names in a phone book

• Each of the items in a list is ordered by position.

• Like a character in a string, each item in a list has a unique index that specifies its

position.

• The index of the first item is 0, and the index of the last item is the length of the list

minus 1

List Literals and Basic Operators :

• In Python, a list literal is written as a sequence of data values separated by commas.

• The entire sequence is enclosed in square brackets ([and]).

• Here are some example list literals:

• [1951, 1969, 1984] # A list of integers

• ["apples", "oranges", "cherries"] # A list of strings

• [] # An empty list

• You can also use other lists as elements in a list, thereby creating a list of lists. Here is

one example of such a list:

• [[5, 9], [541, 78]]

• The Python interpreter evaluates a list literal, and each of the elements are also

evaluated if required

www.Jntufastupdates.com 1

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

>>> import math

>>> x = 2

>>> [x, math.sqrt(x)]

[2, 1.4142135623730951]

>>> [x + 1]

[3]

• You can also build lists of integers using the range and list functions

>>> second = list(range(1, 5))

>>> second

[1, 2, 3, 4]

• The list function can build a list from any iterable sequence of elements, such as a

string:

>>> third = list("Hi there!")

>>> third

['H', 'i', ' ' , 't', 'h', 'e', 'r', 'e', '!']

List Methods :

• append() and extend() :

• The method append expects just the new element as an argument and adds the new

element to the end of the list.

• The method extend performs a similar operation, but adds the elements of its list

argument to the end of the list.

www.Jntufastupdates.com 2

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

>>> example = [1, 2]

>>> example

[1, 2]

>>> example.append(3)

>>> example

[1, 2, 3]

>>> example.extend([11, 12, 13])

>>> example

[1, 2, 3, 11, 12, 13]

>>> example + [14, 15]

[1, 2, 3, 11, 12, 13, 14, 15]

>>> example

[1, 2, 3, 11, 12, 13]

• pop() :

• The method pop is used to remove an element at a given position. If the position is

not specified, pop removes and returns the last element.

• In that case, the elements that followed the removed element are shifted one position

to the left

>>> example

[1, 2, 10, 11, 12, 13]

>>> example.pop() # Remove the last element

13

>>> example

[1, 2, 10, 11, 12]

>>> example.pop(0) # Remove the first element

1

>>> example

[2, 10, 11, 12]

• Searching a List

• first use the in operator to test for presence and then the index method if this test

returns True.

• The next code segment shows how this is done for an example list and target

element:

www.Jntufastupdates.com 3

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

aList = [34, 45, 67]

target = 45

if target in aList:

print(aList.index(target))

else:

print(-l)

• Sorting a List :

• When the elements can be related by comparing them for less than and greater

than as well as equality, they can be sorted.

• The list method sort mutates a list by arranging its elements in ascending order

>>> example = [4, 2, 10, 8]

>>> example

[4, 2, 10, 8]

>>> example.sort()

>>> example

[2, 4, 8, 10]

NOTE:

• Mutator Methods and the Value None :

• Mutable objects (such as lists) have some methods devoted entirely to modifying

the internal state of the object. Such methods are called mutators. Examples

are the list methods insert, append, extend, pop, and sort

Dictionaries:

• A dictionary organizes information by association, not position.

• For example, when you use an english dictionary to look up the definition of

“mammal,” you don’t start at page 1; instead, you turn directly to the words beginning

with “M.”

• Phone books, address books, encyclopedias, and other reference sources also

organize information by association.

• In computer science, data structures organized by association are also called tables or

association lists.

• In Python, a dictionary associates a set of keys with values.

www.Jntufastupdates.com 4

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

Dictionary Literals:

• A Python dictionary is written as a sequence of key/value pairs separated by commas.

• These pairs are sometimes called entries. The entire sequence of entries is enclosed

in curly braces ({ and }).

• A colon (:) separates a key and its value. Here are some example dictionaries:

– phonebook= {"Savannah":"476-3321", "Nathaniel":"351-7743"}

– Info={"Name":"Molly", "Age":18}

• You can even create an empty dictionary—that is, a dictionary that contains no entries.

– {}

Adding Keys and Replacing Values :

• You add a new key/value pair to a dictionary by using the subscript operator []. The

form of this operation is the following:

» <a dictionary>[<a key>] = <a value>

• The next code segment creates an empty dictionary and adds two new entries:

>>> info = {}

>>> info["name"] = "Sandy"

>>> info["occupation"] = "hacker"

>>> info

{'name':'Sandy', 'occupation':'hacker'}

• The subscript is also used to replace a value at an existing key, as follows:

>>> info["occupation"] = "manager"

>>> info

{'name':'Sandy', 'occupation':'manager'}

• The same operation is used for two different purposes: insertion of a new entry and

modification of an existing entry.

Accessing Values :

• You can also use the subscript to obtain the value associated with a key. However, if

the key is not present in the dictionary, Python raises an exception.

>>>info["name"]

'Sandy'

>>> info["job"]

Traceback (most recent call last):

File "<pyshell#1>", line 1, in <module>

www.Jntufastupdates.com 5

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

info["job"]

KeyError: 'job'

Removing Keys :

• To delete an entry from a dictionary, one removes its key using the method pop.

• This method expects a key and an optional default value as arguments.

• If the key is in the dictionary, it is removed, and its associated value is returned.

Otherwise, the default value is returned

Traversing a Dictionary :

• When a for loop is used with a dictionary, the loop’s variable is bound to each key in an

unspecified order. The next code segment prints all of the keys and their values in our info

dictionary:

>>>info ={“name”:”Surya”,”phone”:9876543211}

>>>for key in info:

 print(key, info[key])

phone 9876543211

name Surya

• The entries are represented as tuples within the list. A tuple of variables can then access the

key and value of each entry in this list within a for loop:

>>>for (key, value) in info.items():

 print(key, value)

Gives same output as the previous one

• On each pass through the loop, the variables key and value within the tuple are assigned the

key and value of the current entry in the list. The use of a structure containing variables to

access data within another structure is called pattern matching.

Dictionary Operations :

www.Jntufastupdates.com 6

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

d={1:1,2:2**3,3:3**3,4:4**3,5:5**3,6:6**3}

>>> d

{1: 1, 2: 8, 3: 27, 4: 64, 5: 125, 6: 216}

>>> len(d)

6

>>> d[5]

125

>>> d.get(4)

64

>>>d.pop(4)

64

>>> d

{1: 1, 2: 8, 3: 27, 5: 125, 6: 216}

>>> d.keys()

dict_keys([1, 2, 3, 5, 6])

>>> d.values()

dict_values([1, 8, 27, 125, 216])

>>> d.items()

dict_items([(1, 1), (2, 8), (3, 27), (5, 125), (6, 216)])

www.Jntufastupdates.com 7

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

>>> d.clear()

>>> d

{}

Conversion of hexadecimal to Binary:

• The algorithm visits each digit in the hexadecimal number, selects the corresponding four

bits that represent that digit in binary, and adds these bits to a result string.

• If you maintain the set of associations between hexadecimal digits and binary digits in a

dictionary, then you can just look up each hexadecimal digit’s binary equivalent with a

subscript operation. Such a dictionary is sometimes called a lookup table. Here is the

definition of the lookup table required for hex-to-binary conversions:

• hexToBinaryTable = {'0':'0000', '1':'0001', '2':'0010', '3':'0011', '4':'0100', '5':'0101',

'6':'0110', '7':'0111', '8':'1000', '9':'1001', 'A':'1010', 'B':'1011', 'C':'1100', 'D':'1101', 'E':'1110',

'F':'1111'}

def convert(number, table):

binary = ""

for digit in number:

 binary = binary + table[digit]

return binary

>>> convert("35A", hexToBinaryTable)

'001101011010'

www.Jntufastupdates.com 8

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

FUNCTIONS:

1. Design with Function

• A function packages an algorithm in a chunk of code that you can call by name

• A function can be called from anywhere in a program’s code, including code within

other functions

• A function can receive data from its caller via arguments

• When a function is called, any expressions supplied as arguments are first evaluated.

• Their values are copied to temporary storage locations named by the parameters in the

function’s definition

• A function may have one or more return statements, whose purpose is to terminate the

execution of the function and return control to its caller. A return statement may be

followed by an expression.

1.1 Functions as Abstraction Mechanisms

• Human brain can wrap itself around just a few things at once , People cope with

complexity by developing a mechanism to simplify or hide it. This mechanism is called

an abstraction.

• An abstraction hides detail and thus allows a person to view many things as just one

thing

• “doing my laundry” : This expression is simple, but it refers to a complex process that

involves

– fetching dirty clothes from the hamper,

– separating them into whites and colors,

– loading them into the washer,

– Transferring them to the dryer, and

– folding them and

– putting them into the dresser

• Without abstractions, most of our everyday activities would be impossible to discuss,

plan, or carry out. Likewise, effective designers must invent useful abstractions to

control complexity.

1.2 Functions Eliminate Redundancy

• The first way that functions serve as abstraction mechanisms is by eliminating

redundant, or repetitious, code.

• To explore the concept of redundancy, let’s look at a function named summation, which

www.Jntufastupdates.com 9

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

returns the sum of the numbers within a given range of numbers.

def summation(lower, upper):

result = 0

while lower <= upper:

result += lower

lower += 1

return result

>>> summation(1,4) # The summation of the numbers 1..4

10

>>> summation(50,100) # The summation of the numbers 50..100

3825

• Code redundancy is bad for several reasons. For one thing, it requires the programmer

to laboriously enter or copy the same code over and over, and to get it correct every

time.

• Then, if the programmer decides to improve the algorithm by adding a new feature or

making it more efficient, he or she must revise each instance of the redundant code

throughout the entire program leading to many maintainance problems

• By relying on a single function definition, instead of multiple instances of redundant

code, the programmers free themselves to write only a single algorithm in just one

place—say, in a library module.

• Any other module or program can then import the function for its use. Once imported,

the function can be called as many times as necessary.

• When the programmer needs to debug, repair, or improve the function, she needs to edit

and test only the single function definition. There is no need to edit the parts of the

program that call the function

1.3 Functions Hide Complexity

• Functions serve as abstraction mechanisms is by hiding complicated details.

• A function call expresses the idea of a process to the programmer, without forcing him

or her to wade through the complex code that realizes that idea

– In summation function, although the idea of summing a range of numbers is

simple, the code for computing a summation is not.

www.Jntufastupdates.com 10

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

– There are three variables to manipulate, as well as count-controlled loop logic

to construct.

1.4 Functions Support General Methods with Systematic Variations

• An algorithm is a general method for solving a class of problems. The individual

problems that make up a class of problems are known as problem instances.

• The problem instances for the summation algorithm are the pairs of numbers that specify

the lower and upper bounds of the range of numbers to be summed.

• The summation function contains both the code for the summation algorithm and the

means of supplying problem instances to this algorithm. The problem instances are the

data sent as arguments to the function.

1.5 Functions Support the Division of Labor

• In a computer program, functions can enforce a division of labor.

• Ideally, each function performs a single coherent task, such as computing a summation

or formatting a table of data for output.

• Each function is responsible for using certain data, computing certain results, and

returning these to the parts of the program that requested them.

• Each of the tasks required by a system can be assigned to a function, including the tasks

of managing or coordinating the use of other functions.

2 . Problem Solving with Top-Down Design

• The top down strategy starts with a global view of the entire problem and breaks the

problem into smaller, more manageable sub problems—a process known as problem

decomposition.

• As each subproblem is isolated, its solution is assigned to a function. Problem

decomposition may continue down to lower levels, because a subproblem might in turn

contain two or more lower-level problems to solve.

• As functions are developed to solve each subproblem, the solution to the overall

problem is gradually filled out in detail. This process is also called stepwise refinement.

2.1 The Design of the Text-Analysis Program

www.Jntufastupdates.com 11

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

• The program requires simple input and output components, so these can be expressed

as statements within a main function.

• The processing of the input is complex enough to decompose into smaller subprocesses,

such as obtaining the counts of the sentences, words, and syllables and calculating the

readability scores.

• We develop a new function for each of these computational tasks. The relationships

among the functions in this design are expressed in the structure chart

Structure chart

• A structure chart is a diagram that shows the relationships among a program’s

functions and the passage of data between them.

• Each box in the structure chart is labeled with a function name. The main function at

the top is where the design begins, and decomposition leads us to the lower-level

functions on which main depends.

• The lines connecting the boxes are labeled with data type names, and arrows indicate

the flow of data between them. For example, the function countSentences takes a string

as an argument and returns the number of sentences in that string.

• Note that all functions except one are just one level below main

www.Jntufastupdates.com 12

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

3 . Design with Recursive Functions

• In some cases of top down design , you can decompose a complex problem into smaller

problems of the same form.

– In these cases, the subproblems can all be solved by using the same function.

This design strategy is called recursive design, and the resulting functions are

called recursive functions.

Defining a Recursive Function :

• A recursive function is a function that calls itself.

• To prevent a function from repeating itself indefinitely, it must contain at least one

selection statement. This statement examines a condition called a base case to determine

whether to stop or to continue with another recursive step.

#Python recursive function for summation

def summation(lower, upper):

 """Returns the sum of the numbers from lower through upper."""

if lower > upper:

 return 0

else:

 return lower + summation (lower + 1, upper)

 The recursive call of summation adds up the numbers from lower + 1 through upper .The

function then adds lower to this result and returns it.

Using Recursive Definitions to Construct Recursive Functions

• A recursive definition consists of equations that state what a value is for one or more

base cases and one or more recursive cases.

• For example, the Fibonacci sequence is a series of values with a recursive definition.

The first and second numbers in the Fibonacci sequence are 1. Thereafter, each number

in the sequence is the sum of its two predecessors, as follows:

 1 1 2 3 5 8 13 . . .

• More formally, a recursive definition of the nth Fibonacci number is the following:

Fib(n) = 1, when n = 1 or n = 2

Fib(n) = Fib(n - 1) + Fib(n - 2), for all n > 2

• Given this definition, you can construct a recursive function that computes and returns

www.Jntufastupdates.com 13

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

the nth Fibonacci number. Here it is:

def fib(n):

"""Returns the nth Fibonacci number."""

if n < 3:

 return 1

else:

 return fib(n - 1) + fib(n - 2)

Infinite Recursion:

• Infinite recursion arises when the programmer fails to specify the base case or to reduce

the size of the problem in a way that terminates the recursive process.

• In fact, the Python virtual machine eventually runs out of memory resources to manage

the process, so it halts execution with a message indicating a stack overflow error.

• The next session defines a function that leads to this result:

def runForever(n):

if n > 0:

 runForever(n)

else:

 runForever(n - 1)

>>> runForever(1)

Traceback (most recent call last):

File "<pyshell#6>", line 1, in <module>

runForever(1)

File "<pyshell#5>", line 3, in runForever

runForever(n)

File "<pyshell#5>", line 3, in runForever

runForever(n)

File "<pyshell#5>", line 3, in runForever

runForever(n)

[Previous line repeated 989 more times]

File "<pyshell#5>", line 2, in runForever

if n > 0:

www.Jntufastupdates.com 14

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

RecursionError: maximum recursion depth exceeded in comparison

 The PVM keeps calling runForever(1) until there is no memory left to support another

recursive call. Unlike an infinite loop, an infinite recursion eventually halts execution with an

error message.

The Costs and Benefits of Recursion :

▪ The run-time system on a real computer, such as the PVM(Python Virtual Machine),

must devote some overhead to recursive function calls.

▪ At program startup, the PVM reserves an area of memory named a call stack. For each

call of a function, recursive or otherwise, the PVM must allocate on the call stack a

small chunk of memory called a stack frame.

▪ In this type of storage, the system places the values of the arguments and the return

address for each function call. Space for the function call’s return value is also reserved

in its stack frame.

▪ When a call returns or completes its execution, the return address is used to locate the

next instruction in the caller’s code, and the memory for the stack frame is deallocated.

▪ When, because of a design error, the recursion is infinite, the stack frames are added

until the PVM runs out of memory, which halts the program with an error message.

4. Case Study Gathering Information from a File System

www.Jntufastupdates.com 15

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

• Modern file systems come with a graphical browser, allowing the user to navigate to

files or folders by selecting icons of folders, opening these by double-clicking, and

selecting commands from a drop-down menu. Information on a folder or a file, such as

the size and contents, is also easily obtained in several ways.

• Users of terminal-based user interfaces must rely on entering the appropriate commands

at the terminal prompt to perform these functions.

• In this case study, we develop a simple terminal-based file system navigator that

provides some information about the system.

• In the process, we will have an opportunity to exercise some skills in top-down design

and recursive design.

Request:

Write a program that allows the user to obtain information about the file system.

Analysis:

www.Jntufastupdates.com 16

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

import os, os.path

QUIT = '7'

COMMANDS = ('1', '2', '3', '4', '5', '6', '7')

MENU = """1 List the current directory

2 Move up

3 Move down

4 Number of files in the directory

5 Size of the directory in bytes

6 Search for a filename

7 Quit the program"""

def main():

 while True:

www.Jntufastupdates.com 17

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

 print(os.getcwd())

 print(MENU)

 command = acceptCommand() #takes choice

 runCommand(command)

 if command == QUIT:

 print("Have a nice day!")

 break

def acceptCommand():

 """Inputs and returns a legitimate command number."""

 command = input("Enter a number: ")

 if command in COMMANDS:

 return command

 else:

 print("Error: command not recognized")

 return acceptCommand()

def runCommand(command):

 """Selects and runs a command."""

 if command == '1':

 listCurrentDir(os.getcwd())

 elif command == '2':

 moveUp()

 elif command == '3':

 moveDown(os.getcwd())

 elif command == '4':

 print("The total number of files is", \

 countFiles(os.getcwd()))

 elif command == '5':

 print("The total number of bytes is", \

 countBytes(os.getcwd()))

 elif command == '6':

 target = input("Enter the search string: ")

 fileList = findFiles(target, os.getcwd())

 if not fileList:

www.Jntufastupdates.com 18

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

 print("String not found")

 else:

 for f in fileList:

 print(f)

def listCurrentDir(dirName):

 """Prints a list of the cwd's contents."""

 lyst = os.listdir(dirName)

 for element in lyst:

 print(element)

def moveUp():

 """Moves up to the parent directory."""

 os.chdir("..")

def moveDown(currentDir):

 """Moves down to the named subdirectory if it exists."""

 newDir = input("Enter the directory name: ")

 if os.path.exists(currentDir + os.sep + newDir) and os.path.isdir(newDir):

 os.chdir(newDir)

 else:

 print("ERROR: no such name")

def countFiles(path):

 """Returns the number of files in the cwd and all its subdirectories."""

 count = 0

 lyst = os.listdir(path)

 for element in lyst:

 if os.path.isfile(element):

 count += 1

 else:

 os.chdir(element)

 count += countFiles(os.getcwd())

www.Jntufastupdates.com 19

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

 os.chdir("..")

 return count

def countBytes(path):

 """Returns the number of bytes in the cwd and all its subdirectories."""

 count = 0

 lyst = os.listdir(path)

 for element in lyst:

 if os.path.isfile(element):

 count += os.path.getsize(element)

 else:

 os.chdir(element)

 count += countBytes(os.getcwd())

 os.chdir("..")

 return count

def findFiles(target, path):

"""Returns a list of the filenames that contain the target string in the cwd and all its

subdirectories."""

 files = []

 lyst = os.listdir(path)

 for element in lyst:

 if os.path.isfile(element):

 if target in element:

 files.append(path + os.sep + element)

 else:

 os.chdir(element)

 files.extend(findFiles(target, os.getcwd()))

 os.chdir("..")

 return files

if __name__ == "__main__":

 main()

www.Jntufastupdates.com 20

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

5. Managing a Program’s Namespace

Namespaces in Python

• A namespace is a collection of currently defined symbolic names along with information

about the object that each name references.

• You can think of a namespace as a dictionary in which the keys are the object names

and the values are the objects themselves.

– Each key-value pair maps a name to its corresponding object

• In a Python program, there are four types of namespaces:

– Built-In

– Global

– Enclosing

– Local

i) The Built-In Namespace

• The built-in namespace contains the names of all of Python’s built-in objects. These

are available at all times when Python is running.

• You can list the objects in the built-in namespace with the following command:

>>> dir(__builtins__)

The Python interpreter creates the built-in namespace when it starts up. This

 namespace remains in existence until the interpreter terminates.

ii) The Global Namespace

• The global namespace contains any names defined at the level of the main program.

• Python creates the global namespace when the main program body starts, and it remains

in existence until the interpreter terminates.

• The interpreter also creates a global namespace for any module that your program loads

with the import statement.

iii) The Local and Enclosing Namespaces

The interpreter creates a new namespace whenever a function executes. That namespace is

local to the function and remains in existence until the function terminates

def f():

 print('Start f()')

www.Jntufastupdates.com 21

https://realpython.com/python-dicts
https://realpython.com/absolute-vs-relative-python-imports/

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

 def g():

 print('Start g()')

 print('End g()')

 return

 g()

 print('End f()')

 return

Output :

>>> f()

Start f()

Start g()

End g()

End f()

• When the main program calls f(), Python creates a new namespace for f(). Similarly,

when f() calls g(), g() gets its own separate namespace.

• The namespace created for g() is the local namespace, and the namespace created

for f() is the enclosing namespace.

• Each of these namespaces remains in existence until its respective function terminates.

Scope:

• In Python, a name’s scope is the area of program text in which the name refers to a given

value

• In general, the meanings of temporary variables are restricted to the body of the

functions in which they are introduced, and they are invisible elsewhere in a module.

• The restricted visibility of temporary variables befits their role as temporary working

storage for a function.

• Although a Python function can reference a module variable for its value, it cannot

under normal circumstances assign a new value to a module variable.

• When such an attempt is made, the PVM creates a new, temporary variable of the same

name within the function.

• The following script shows how this works:

x = 5

def f():

www.Jntufastupdates.com 22

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

 x = 10 # Attempt to reset x

f() # Does the top-level x change?

print(x) # No, this displays 5

• When the function f is called, it does not assign 10 to the module variable x; instead, it

assigns 10 to a temporary variable x.

• In fact, once the temporary variable is introduced, the module variable is no longer

visible within function f. In any case, the module variable’s value remains unchanged

by the call

Lifetime:

• A variable’s lifetime is the period of time during program execution when the variable

has memory storage associated with it.

• When a variable comes into existence, storage is allocated for it; when it goes out of

existence, storage is reclaimed by the PVM.

• The concept of lifetime explains the existence of two variables called x in our last

example session.

– The module variable x comes into existence before the temporary variable x

and survives the call of function f.

– During the call of f, storage exists for both variables, so their values remain

distinct.

• Using Keywords for Default and Optional Arguments:

• The programmer can also specify optional arguments with default values in any

function definition.

• Here is the syntax:

def <function name>(<required arguments>, <key-1> = <val-1>, ... <key-n> =

<val-n>)

• The required arguments are listed first in the function header. These are the ones that

are “essential” for the use of the function by any caller.

• Following the required arguments are one or more default arguments or keyword

arguments. These are assignments of values to the argument names. When the function

is called without these arguments, their default values are automatically assigned to

them. When the function is called with these arguments, the default values are

overridden by the caller’s values.

• When using functions that have default arguments, you must provide the required

www.Jntufastupdates.com 23

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

arguments and place them in the same positions as they are in the function definition’s

header.

• The default arguments that follow can be supplied in two ways:

1. By position. In this case, the values are supplied in the order in which the arguments

occur in the function header. Defaults are used for any arguments that are omitted.

2. By keyword. In this case, one or more values can be supplied in any order, using the

syntax <key> = <value> in the function call.

• Here is an example of a function with one required argument and two default arguments

and a session that shows these options:

>>> def example(required, option1 = 2, option2 = 3):

 print(required, option1, option2)

>>> example(1) # Use all the defaults

1 2 3

>>> example(1, 10) # Override the first default

1 10 3

>>> example(1, 10, 20) # Override all the defaults

1 10 20

>>> example(1, option2 = 20) # Override the second default

1 2 20

>>> example(1, option2 = 20, option1 = 10) # In any order

1 10 20

6. Anonomyous Function or Lambda function:

• An anonymous function is a function that is defined without a name.

• While normal functions are defined using the def keyword in Python, anonymous

functions are defined using the lambda keyword.

 lambda arguments: expression

Lambda functions can have any number of arguments but only one expression. The

expression is evaluated and returned.

EXAMPLE 1:

>>> d = lambda x: x * 2

>>> print(d(5))

10

www.Jntufastupdates.com 24

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

• We use lambda functions when we require a nameless function for a short period of

time.

• In Python, we generally use it as an argument to a higher-order function (a function that

takes in other functions as arguments).

• Lambda functions are used along with built-in functions like filter(), map() etc.

EXAMPLE 2 :Lambda with filter():

• The filter() function in Python takes in a function and a list as arguments.

• The function is called with all the items in the list and a new list is returned which

contains items for which the function evaluates to True

>>> my_list = [1, 5, 4, 6, 8, 11, 3, 12]

>>> new_list = list(filter(lambda x: (x%2 == 0) , my_list))

>>> print(new_list)

[4, 6, 8, 12]

EXAMPLE 3: Lambda with map():

• The map() function in Python takes in a function and a list.

• The function is called with all the items in the list and a new list is returned which

contains items returned by that function for each item.

>>> my_list = [1, 5, 4, 6, 8, 11, 3, 12]

>>> new_list=list(map(lambda x:x**2 , my_list))

>>> new_list

[1, 25, 16, 36, 64, 121, 9, 144]

7. Higher Order Functions

• A function is called Higher Order Function if it contains other functions as a

parameter or returns a function as an output i.e, the functions that operate with another

function are known as Higher order Functions

• The 3 mostly used higher order functions are:

– map()

– filter()

– reduce()

map() :

www.Jntufastupdates.com 25

https://www.programiz.com/python-programming/function-argument

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

• map() function returns a map object(which is an iterator) of the results after applying

the given function to each item of a given iterable (list, tuple etc.)

• Syntax :

 map(fun, iter)

• Parameters :

– fun : It is a function to which map passes each element of give iterable.

– iter : It is a iterable which is to be mapped.

Python program to demonstrate working of map.

Return double of n

def addition(n):

 return n + n

We double all numbers using map()

numbers = (1, 2, 3, 4)

result = map(addition, numbers)

print(list(result))

Output:

[2, 4, 6, 8]

• filter()

• The filter() method filters the given sequence with the help of a function that tests each

element in the sequence to be true or not.

• Syntax:

 filter(function, sequence)

• Parameters:

– function: function that tests if each element of a sequence true or not.

– sequence: sequence which needs to be filtered, it can be sets, lists, tuples, or

containers of any iterators.

• Returns: returns an iterator that is already filtered.

function that filters vowels

def fun(variable):

 letters = ['a', 'e', 'i', 'o', 'u']

www.Jntufastupdates.com 26

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

 if (variable in letters):

 return True

 else:

 return False

sequence

sequence = ['g', 'e', 'e', 'j', 'k', 's', 'p', 'r']

using filter function

filtered = filter(fun, sequence)

print('The filtered letters are:')

for s in filtered:

 print(s)

OUTPUT :

The filtered letters are: e e

• reduce() :

• The Python functools module includes a reduce function that expects a function of two

arguments and a list of values. The reduce function returns the result of applying the

function as just described.

• The following example shows reduce used twice—once to produce a sum and once to

produce a product:

>>> from functools import reduce

>>> def add(x, y):

 return x + y

>>> def multiply(x, y):

 return x * y

>>> data = [1, 2, 3, 4]

>>> reduce(add, data)

10

>>> reduce(multiply, data)

24

8. Modules in Python:

www.Jntufastupdates.com 27

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

• Modules refer to a file containing Python statements and definitions.

• A file containing Python code, for example: example.py, is called a module, and its module

name would be example

• Modules to break down large programs into small manageable and organized files.

Furthermore, modules provide reusability of code.

User defined module :

Let us create a module. Type the following and save it as example.py.

Python Module example

def add(a, b):

 """This program adds two numbers and return the result"""

 result = a + b

 return result

We use the import keyword to do this. To import our previously defined module example,

we type the following in the Python prompt.

>>> import example

This does not import the names of the functions defined in example directly in the current

symbol table. It only imports the module name example there.

Using the module name we can access the function using the dot . operator. For example:

>>> example.add(4,5.5)

9.5

• Modules are imported by using import statement

Syntax:

i) import module_name

Example:

>>>import math

>>>print(math.sqrt(25))

5.0

ii) from….import statement:

A module may contain definition of many functions and variables.

www.Jntufastupdates.com 28

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

When you import a module, you can use any variable or any function defined in that module

but if we want to use only selective variables and functions then we will use the

“from……import statement”

Syntax:

from module_name import function_name/variable_name

e.g.1

>>>from time import asctime

print(asctime())

Thu Aug 26 15:08:52 2021

e.g.2

>>>from math import pi

>>>print("pi= ", pi)

To import more than one item from the module, we use a comma separated list like below

from math import sqrt, pow

print(sqrt(25), pow(10,2))

iii) "as keyword":

To avoid the confusion in function names we use as keyword to give a alias name

e.g.

>>>from math import sqrt as square_root

>>>print(square_root(25))

Creating a module: num.py

def square(x):

 return(x*x)

def cube(x):

return(x*x*x)

def power(x, y):

www.Jntufastupdates.com 29

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

return(x**y)

Example program:

import num

print(“Square of 10”,num.square(10))

print(“Cube of 10”,num.cube(10))

print(“Power of 10, 2 is “,num.power(10,5))

9. Packages in Python:

Similar files are kept in the same directory, for example, we may keep all the songs in the

"music" directory. Analogous to this, Python has packages for directories and modules for files.

A package can contain one or more relevant modules. Physically, a package is actually a folder

containing one or more module files

Creating a Package:

Let's create a package named mypackage, using the following steps:

• Create a new folder named C:\MyApp.

• Inside MyApp, create a subfolder with the name 'mypackage'.

• Create an empty __init__.py file in the mypackage folder.

• Using a Python-aware editor like IDLE, create modules greet.py and functions.py with

the following code:

greet.py

def SayHello(name):

 print("Hello ", name)

functions.py

 def sum(x,y):

return x+y

def average(x,y):

www.Jntufastupdates.com 30

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

return (x+y)/2

def power(x,y):

return x**y

__init__.py :

The package folder contains a special file called __init__.py, which stores the package's

content. It serves two purposes:

• The Python interpreter recognizes a folder as the package if it contains

__init__.py file.

• __init__.py exposes specified resources from its modules to be imported.

An empty __init__.py file makes all functions from the above modules available when

this package is imported. Note that __init__.py is essential for the folder to be

recognized by Python as a package.

• Import the functions module from the mypackage package and call its power()

function.

>>> from mypackage import functions

>>> functions.power(3,2)

9

• It is also possible to import specific functions from a module in the package.

>>> from mypackage.functions import sum

>>> sum(10,20)

www.Jntufastupdates.com 31

 Surya Lakshmi Kantham Vinti

 CSE Dept

 ACET

30

>>> average(10,12)

Traceback (most recent call last):

File "<pyshell#13>", line 1, in <module>

NameError: name 'average' is not defined

www.Jntufastupdates.com 32

